機械学習– category –
-
ディープラーニング
Pytorch – 自作のデータセットを扱う Dataset クラスを作る方法
Pytorch で自作のデータセットを扱うには、Dataset クラスを継承したクラスを作成する必要があります。本記事では、そのやり方について説明します。 -
ディープラーニング
Pytorch – 計算を行うデバイスを指定する方法について
Pytorch で計算を指定したデバイス (CPU または GPU) で行う方法について解説します。 -
ディープラーニング
Pytorch – 事前学習モデルを使ってクラス分類モデルを学習する方法
Pytorch で事前学習済みモデルを使ってクラス分類モデルを学習する方法について解説します。 -
機械学習
回帰モデルの評価指標まとめ – MSE、MSLE、MAE、決定係数など
回帰モデルを評価するときに使用する評価指標をまとめました。 -
機械学習
機械学習 – 混同行列、真陽性、真陰性、偽陽性、偽陰性について
クラス分類モデルを評価するときに使用する混同行列、真陽性 (TP)、真陰性 (TN)、偽陽性 (FP)、偽陰性 (FN) について解説します。 -
機械学習
機械学習 – 精度、適合率、再現率、F値について
精度 (Accuracy)、適合率 (Precision)、再現率 (Recall)、F値 (F-Measure) について解説します。 -
機械学習
機械学習 – 特徴量のスケーリングについて
scikit-learn を使った特徴量のスケーリング方法について解説します。 -
PRML
PRML – 「1.1 多項式曲線フィッティング」の Python 実装
「パターン認識と機械学習 上 (PRML)」 の「1.1 例: 多項式曲線フィッティング」に記載されている内容を Python で再現したコードになります。 書籍に記載されている説明は省略しているので、PRML と合わせて読むことが前提の記事です。 -
機械学習
機械学習 – カテゴリ変数を整数や one-hot 表現に変数する方法
カテゴリ変数を数値に変換する方法として、順序エンコーディング (Ordinal Encoding) とワンホットエンコーディング (One-hot Encoding) を解説します。 -
機械学習
統計学 – Python で学ぶ 最尤推定法
最尤推定 (Maximum Likelihood Estimation / MLE) について、Python で動かしながら理解することを目的とした記事になります。 -
機械学習
機械学習 – 決定理論について
データをクラスに分類する識別規則について解説します。 -
機械学習
機械学習 – ベイズの識別規則
ベイズの識別規則について解説します。以下の記事の続きになります。機械学習 - 決定理論ついて (ML 識別規則、MAP 識別規則) - pystyle